Rainbow supercharacters and a poset analogue to q-binomial coefficients

نویسندگان

  • Daniel Bragg
  • Nathaniel Thiem
چکیده

This paper introduces a variation on the binomial coefficient that depends on a poset and interpolates between q-binomials and 1-binomials: a total order gives the usual q-binomial, and a poset with no relations gives the usual binomial coefficient. These coefficients arise naturally in the study of supercharacters of the finite groups of unipotent upper-triangular matrices, whose representation theory is dictated by the combinatorics of set partitions. In particular, we find a natural set of modules for these groups, whose characters have degrees given by q-binomials, and whose decomposition in terms of supercharacters are given by poset binomial coefficients. This results in a non-trivial family of formulas relating poset binomials to the usual q-binomials. Résumé. Cet article présente une variation des coefficients binomiaux qui dépend d’un ordre partiel et qui interpole entre les q-binômes et les 1-binômes: un ordre total donne les q-binômes habituelles, et un ordre partiel sans relations donne les coefficients binomiaux habituelles. Ces coefficients apparaissent naturellement dans l’étude des supercaractères de groupes finis de matrices unipotentes, triangulaires supérieures, dont la représentation est dictée par la théorie de la combinatoire des partitions d’ensembles. En particulier, nous trouvons un ensemble naturel de modules pour ces groupes, dont les caractères ont des degrés donnés par les q-binômes, et dont les décompositions en termes de supercaractères sont donnés par les coefficients binômiaux d’ordres partiels. Cela donne une famille non-trivial de formules qui relient les binômes d’ordres partiels aux q-binômes habituelles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Restrictions of Rainbow Supercharacters and Poset Binomials

A supercharacter theory of a finite group is a natural approximation to the ordinary character theory. There is a particularly nice supercharacter theory for Un, the group of unipotent upper triangular matrices over a finite field, that has a rich combinatorial structure based on set partitions. Various representation theoretic constructions such as restriction and induction have supercharacter...

متن کامل

The Gaussian coefficient revisited

We give new q-(1+q)-analogue of the Gaussian coefficient, also know as the q-binomial which, like the original q-binomial [ n k ] q , is symmetric in k and n− k. We show this q-(1 + q)-binomial is more compact than the one discovered by Fu, Reiner, Stanton and Thiem. Underlying our q-(1 + q)-analogue is a Boolean algebra decomposition of an associated poset. These ideas are extended to the Birk...

متن کامل

AN OVERPARTITION ANALOGUE OF THE q-BINOMIAL COEFFICIENTS

We define an overpartition analogue of Gaussian polynomials (also known as q-binomial coefficients) as a generating function for the number of overpartitions fitting inside the M ×N rectangle. We call these new polynomials over Gaussian polynomials or over q-binomial coefficients. We investigate basic properties and applications of over q-binomial coefficients. In particular, via the recurrence...

متن کامل

Nonzero coefficients in restrictions and tensor products of supercharacters of U n ( q ) ( extended abstract )

The standard supercharacter theory of the finite unipotent upper-triangular matrices Un(q) gives rise to a beautiful combinatorics based on set partitions. As with the representation theory of the symmetric group, embeddings of Um(q) ⊆ Un(q) for m ≤ n lead to branching rules. Diaconis and Isaacs established that the restriction of a supercharacter of Un(q) is a nonnegative integer linear combin...

متن کامل

Nonzero coefficients in restrictions and tensor products of supercharacters of Un(q)

The standard supercharacter theory of the finite unipotent upper-triangular matrices Un(q) gives rise to a beautiful combinatorics based on set partitions. As with the representation theory of the symmetric group, embeddings of Um(q) ⊆ Un(q) for m ≤ n lead to branching rules. Diaconis and Isaacs established that the restriction of a supercharacter of Un(q) is a nonnegative integer linear combin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013